Selected Topics in Classical Integrability
نویسنده
چکیده
Basic notions regarding classical integrable systems are reviewed. An algebraic description of the classical integrable models together with the zero curvature condition description is presented. The classical r-matrix approach for discrete and continuum classical integrable models is introduced. Using this framework the associated classical integrals of motion and the corresponding Lax pair are extracted based on algebraic considerations. Our attention is restricted to classical discrete and continuum integrable systems with periodic boundary conditions. Typical examples of discrete (Toda chain, discrete NLS model) and continuum integrable models (NLS, sine-Gordon models and affine Toda field theories) are also discussed. ∗This article is based on a series of lectures presented at the University of Oldenburg in July 2011.
منابع مشابه
On the Extensions of the Darboux Theory of Integrability
Recently some extensions of the classical Darboux integrability theory to autonomous and non-autonomous polynomial vector fields have been done. The classical Darboux integrability theory and its recent extensions are based on the existence of algebraic invariant hypersurfaces. However the algebraicity of the invariant hypersurfaces is not necessary and the unique necessary condition is the alg...
متن کاملThe Quadratic Zeeman Effect in Hydrogen: an Example of Semi-classical Quantization of a Strongly Non-separable but Almost Integrable System
Semi-classical quantization of multidimensional systems is discussed both in terms of the Einstein-Brillouin-Keller quantization on invariant tori, and in terms of infinite families of periodic orbits. The notions of separability, integrability, and non-integrability of classical systems are introduced. An approximate integrability is used to quantize the quadratic Zeeman problem, via analytic ...
متن کاملAspects of Integrability in a Classical Model for Non-Interacting Fermionic Fields
In this work we investigate the issue of integrability in a classical model for non-interacting fermionic fields. This model is constructed via classical-quantum correspondence obtained from the semiclassical treatment of the quantum system. Our main finding is that the classical system, contrary to the quantum system, is not integrable in general. Regarding this contrast it is clear that in ge...
متن کاملFUZZY GOULD INTEGRABILITY ON ATOMS
In this paper we study the relationships existing between total measurability in variation and Gould type fuzzy integrability (introduced and studied in [21]), giving a special interest on their behaviour on atoms and on finite unions of disjoint atoms. We also establish that any continuous real valued function defined on a compact metric space is totally measurable in the variation of a regula...
متن کاملSymmetries and Integrability
This is a survey on finite-dimensional integrable dynamical systems related to Hamiltonian G-actions. Within a framework of noncommutative integrability we study integrability of G-invariant systems, collective motions and reduced integrability. We also consider reductions of the Hamiltonian flows restricted to their invariant submanifolds generalizing classical Hess–Appel’rot case of a heavy r...
متن کامل